首页> 外文OA文献 >Graphene nanoplatelet-modified epoxy: Effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms
【2h】

Graphene nanoplatelet-modified epoxy: Effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms

机译:石墨烯纳米片改性环氧树脂:纵横比和表面功能对机械性能和增韧机制的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016, Springer Science+Business Media New York.Graphene has the potential to act as a high-performance reinforcement for adhesives or fibre composites when combined with epoxy polymer. However, it is currently mostly available not as single high aspect ratio sheets but as graphene nanoplatelets (GNPs), comprising stacks of graphene sheets. GNPs of a range of lateral size, thickness, aspect ratio and surface functionality were used to modify an anhydride-cured epoxy polymer. The morphology, mechanical properties and toughening mechanisms of these modified epoxies were investigated. The GNPs were sonicated in tetrahydrofuran (THF) or n-methyl-pyrrolidone (NMP) to facilitate dispersion in the epoxy. The use of THF resulted in large agglomerates, whereas more finely dispersed stacks of GNPs were observed for NMP. The maximum values of modulus (3.6 GPa at 1 wt%) and fracture energy (343 J/m2 at 2 wt%) were measured for the epoxy modified with an intermediate platelet size of approximately 4 μ m, compared to 2.9 GPa and 96 J/m2, respectively, for the unmodified epoxy. The Young’s modulus was highly dependent on the dispersion quality, whereas the fracture energy was independent of the degree of GNP dispersion. The larger agglomerates of the GNPs which were dispersed in THF toughened the epoxy by crack deflection, whereas the GNPs dispersed in NMP showed platelet debonding, pull-out and plastic void growth of the epoxy. This work indicates that reinforcement and toughening can be achieved at much lower contents than for conventional modifiers. Further, achieving a good dispersion is crucial to the engineering application of these materials, and intermediate-sized graphene achieves the best balance of properties.
机译:©2016,Springer Science +商业媒体纽约,石墨烯与环氧聚合物结合后,有可能作为粘合剂或纤维复合材料的高性能增强剂。但是,目前大多数不是以单一的高纵横比薄板形式使用,而是以包括石墨烯薄板堆叠的石墨烯纳米片(GNP)形式使用。横向尺寸,厚度,纵横比和表面官能度范围内的GNP用于修饰酸酐固化的环氧聚合物。研究了这些改性环氧树脂的形态,力学性能和增韧机理。将GNP在四氢呋喃(THF)或正甲基吡咯烷酮(NMP)中进行超声处理,以利于分散在环氧树脂中。使用THF会产生大的附聚物,而对于NMP则观察到GNP的堆积更加细密。对于中间片晶尺寸约为4μm的改性环氧树脂,测量的模量(3.6 GPa在1 wt%下)和断裂能(343 J / m2在2 wt%下)的最大值是2.9 GPa和96 J / m2分别表示未改性的环氧树脂。杨氏模量高度取决于分散质量,而断裂能与GNP分散程度无关。分散在THF中的较大GNP团聚体通过裂纹挠曲使环氧树脂增韧,而分散在NMP中的GNP则显示出血小板的脱粘,拉出和塑性空隙的增长。这项工作表明与传统的改性剂相比,其含量低得多的情况下可以实现增强和增韧。此外,实现良好的分散性对于这些材料的工程应用至关重要,并且中等尺寸的石墨烯可实现最佳的性能平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号